Investigating thermal evolution of the self - gravitating one dimensional molecular cloud by smoothed particle hydrodynamics
نویسنده
چکیده
The heating of the ion-neutral (or ambipolar) diffusion may affect the thermal phases of the molecular clouds. We present an investigation on the effect of this heating mechanism in the thermal instability of the molecular clouds. A weakly ionized one dimensional slab geometry, which is allowed for self-gravity and ambipolar diffusion, is chosen to study its thermal phases. We use the thermodynamic evolution of the slab to obtain the regions where slab cloud becomes thermally unstable. We investigate this evolution using the model of ambipolar diffusion with two-fluid smoothed particle hydrodynamics, as outlined by Hosking & Whitworth. Firstly, some parts of the technique are improved to test the pioneer works on behavior of the ambipolar diffusion in an isothermal self-gravitating slab. Afterwards, the improved two-fluid technique is used for thermal evolution of the slab. The results show that the thermal instability may persist inhomogeneities with a large density contrast at the intermediate parts of the cloud. We suggest that this feature may be responsible for the planet formation in the intermediate regions of a collapsing molecular cloud and/or may also be relevant to the formation of star forming dense cores in the clumps. Subject headings: ISM: clouds – Hydrodynamics – ISM: magnetic fields – diffusion – methods: numerical – ISM: evolution.
منابع مشابه
3D meshfree magnetohydrodynamics
We describe a new method to include magnetic fields into smooth particle hydrodynamics. The derivation of the self-gravitating hydrodynamics equations from a variational principle is discussed in some detail. The non-dissipative magnetic field evolution is instantiated by advecting so-called Euler potentials. This approach enforces the crucial ∇·B = 0-constraint by construction. These recent de...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کامل3D Continuum Radiative Transfer Images of a Molecular Cloud Core Evolution
We analyze a 3D Smoothed Particle Hydrodynamics simulation of an evolving and later collapsing pre-stellar core. Using a 3D Continuum Radiative Transfer program, we generate images at 7, 15, 175 μm, and 1.3 mm for different evolutionary times and viewing angles. We discuss the observability of the properties of pre-stellar cores for the different wavelengths. For examples of non-symmetric fragm...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملThe role of the energy equation in the fragmentation of protostellar discs during stellar encounters
In this paper, we use high-resolution smoothed particle hydrodynamics (SPH) simulations to investigate the response of a marginally stable self-gravitating protostellar disc to a close parabolic encounter with a companion discless star. Our main aim is to test whether close brown dwarfs or massive planets can form out of the fragmentation of such discs. We follow the thermal evolution of the di...
متن کامل